Lyft 的技术面试以注重算法与逻辑推理能力而闻名,其中常包含复杂的图论、搜索类问题。本文将通过一道真实的 Lyft 面试题目,还原候选人解题的全过程,展现如何借助 csvosupport 的实时辅助,让候选人不仅能够清晰阐述解题思路,还能自信应对深度追问与优化讨论
📋 面试题目:单词转换(Word Ladder
题目描述(英文原题)
A transformation sequence from word beginWord to word endWord using a dictionary wordList is a sequence of words beginWord -> s1 -> s2 -> ... -> sk such that:
- Every adjacent pair of words differs by a single letter
- Every
sifor1 <= i <= kis inwordList beginWorddoes not need to be inwordListsk == endWord
Given two words, beginWord and endWord, and a dictionary wordList, return the number of words in the shortest transformation sequence from beginWord to endWord, or 0 if no such sequence exists.
示例
Example 1:
Input: beginWord = "hit", endWord = "cog", wordList = ["hot","dot","dog","lot","log","cog"]
Output: 5
Explanation: "hit" -> "hot" -> "dot" -> "dog" -> "cog"
Example 2:
Input: beginWord = "hit", endWord = "cog", wordList = ["hot","dot","dog","lot","log"]
Output: 0
Explanation: endWord "cog" is not in wordList
🎯 核心考点分析
这道题是经典LeetCode 127. Word Ladder,主要考察
- BFS(广度优先搜索) - 寻找最短路
- 图的建模能力 - 将单词转换问题转化为图遍
- *优化技 - 如何高效生成相邻单词
- 边界处理 - 处理无解情况
💡 解题思路(csvosupport 实战指导
方法一:BFS + 哈希集合
*csvosupport 建议 这道题的本质是在图中寻找最短路径,BFS 是最优选择
from collections import deque
def ladderLength(beginWord, endWord, wordList):
# 边界检查:endWord 必须wordList
word_set = set(wordList)
if endWord not in word_set:
return 0
# BFS 初始
queue = deque([(beginWord, 1)]) # (当前单词, 路径长度)
visited = {beginWord}
while queue:
current_word, length = queue.popleft()
# 找到目标单词
if current_word == endWord:
return length
# 生成所有可能的下一个单
for i in range(len(current_word)):
for c in 'abcdefghijklmnopqrstuvwxyz':
next_word = current_word[:i] + c + current_word[i+1:]
# 如果下一个单词在字典中且未访问过
if next_word in word_set and next_word not in visited:
visited.add(next_word)
queue.append((next_word, length + 1))
return 0
# 测试
beginWord = "hit"
endWord = "cog"
wordList = ["hot","dot","dog","lot","log","cog"]
print(ladderLength(beginWord, endWord, wordList)) # 输出: 5
时间复杂度: O(M² × N)
- M 是单词长
- N 是单词列表的长度
空间复杂度: O(N)
方法二:双向 BFS(优化版
*csvosupport 高级指导 对于大规模数据,双向 BFS 可以显著提升效率
def ladderLength_bidirectional(beginWord, endWord, wordList):
word_set = set(wordList)
if endWord not in word_set:
return 0
# 双向 BFS
begin_set = {beginWord}
end_set = {endWord}
visited = set()
length = 1
while begin_set and end_set:
# 优化:总是从较小的集合开始扩
if len(begin_set) > len(end_set):
begin_set, end_set = end_set, begin_set
next_set = set()
for word in begin_set:
for i in range(len(word)):
for c in 'abcdefghijklmnopqrstuvwxyz':
next_word = word[:i] + c + word[i+1:]
# 如果两个方向相遇
if next_word in end_set:
return length + 1
if next_word in word_set and next_word not in visited:
visited.add(next_word)
next_set.add(next_word)
begin_set = next_set
length += 1
return 0
时间复杂度: O(M² × N/2) - 双向搜索减少一半搜索空 空间复杂度: O(N)
🚀 面试中的深度追问
Q1: 如何优化字符替换的过程?
*csvosupport 建议
- 可以预处理构建通用状态图
- 例如:
"hot"->"*ot","h*t","ho*" - 这样可以快速找到所有相邻单
from collections import defaultdict
def build_pattern_dict(wordList):
pattern_dict = defaultdict(list)
for word in wordList:
for i in range(len(word)):
pattern = word[:i] + '*' + word[i+1:]
pattern_dict[pattern].append(word)
return pattern_dict
Q2: 如果需要返回所有最短路径怎么办?
*csvosupport 建议
- 使用 BFS 记录每个节点的前
- 最后通过回溯构建所有路
- 这就LeetCode 126. Word Ladder II
Q3: 如何处理超大规模字典
*csvosupport 建议
- 使用 Trie 树存储字
- 预处理建立索
- 考虑分布式处理方
📊 复杂度对
| 方法 | 时间复杂 | 空间复杂 | 适用场景 |
|---|---|---|---|
| 单向 BFS | O(M² × N) | O(N) | 通用场景 |
| 双向 BFS | O(M² × N/2) | O(N) | 大规模数 |
| 预处+ BFS | O(M × N) | O(M × N) | 多次查询 |
💼 csvosupport 如何助力 Lyft 面试
Lyft 面试中,csvosupport 提供
算法选择指导 - 快速识别最优算 代码实现辅助 - 确保代码逻辑清晰 优化方案讨论 - 展现工程实践能力 边界条件提醒 - 避免遗漏特殊情况 追问应对策略 - 自信回答深度追问
想在 Lyft、Uber、DoorDash 等公司的技术面试中脱颖而出
联系 csvosupport,我们提供专业的 VO 面试辅助服务,助你顺利拿Offer
*标签 #Lyft #WordLadder #BFS #图论 #最短路#VO辅助 #面试辅助 #算法面试 #一亩三分地
需要面试真题? 立刻联系微信 Coding0201,获得真题。