Tesla's algorithmic interviews emphasize dynamic programming and greedy thinking. This article demonstrates how to optimize from brute force recursion to dynamic programming using the "Minimum Operations" problem. oavoservice helps you master optimization techniques.
📋 Problem Description
Given an integer n, you can perform the following operations:
- If
nis even, divide by 2. - If
nis odd, add 1 or subtract 1.
Return the minimum number of operations to reduce n to 1.
Example:
Input: n = 15
Output: 5
Explanation: 15 -> 16 -> 8 -> 4 -> 2 -> 1
🎯 Core Concepts
- Dynamic Programming - Optimal Substructure
- Greedy Strategy - Local Optimal Choice
- Bit Manipulation - Efficient Parity Check
- Memoization - Avoid Re-computation
💡 Solution Strategy (oavoservice Guidance)
Method 1: Recursion + Memoization
def minOperations(n, memo={}):
if n == 1:
return 0
if n in memo:
return memo[n]
if n % 2 == 0:
result = 1 + minOperations(n // 2, memo)
else:
result = 1 + min(
minOperations(n + 1, memo),
minOperations(n - 1, memo)
)
memo[n] = result
return result
Time Complexity: O(log n) Space Complexity: O(log n)
Method 2: Greedy (Optimal)
For odd numbers, should we +1 or -1?
- If
nends in01(binary),-1makes it divisible by 4. - If
nends in11(binary),+1makes it divisible by 4 (except for 3).
def minOperations_greedy(n):
ops = 0
while n > 1:
if n % 2 == 0:
n //= 2
else:
if n == 3 or n % 4 == 1:
n -= 1
else:
n += 1
ops += 1
return ops
Time Complexity: O(log n) Space Complexity: O(1)
💼 How oavoservice Helps
Pattern Recognition - Quickly identify optimal strategies Optimization Guidance - Full path from brute force to optimal Code Implementation - Ensure concise and high-performance code Follow-up Prep - Handling variants
Contact oavoservice for professional VO interview assistance!
Tags: #Tesla #DynamicProgramming #Greedy #BitManipulation #VOHelp #InterviewPrep #1point3acres
Need real interview questions? Contact WeChat Coding0201 immediately to get real questions.